Natural polymers are at the center of materials development for biomedical and biotechnological applications based on their biocompatibility, low-toxicity and biodegradability. In this study, a novel nanobiocomposite based on cross-linked pectin-cellulose hydrogel, silk fibroin, and Mg(OH)2 nanoparticles was designed and synthesized. After extensive physical-chemical characterization, the biological response of pectin-cellulose/silk fibroin/Mg(OH)2 nanobiocomposite scaffolds was evaluated by cell viability, red blood cells hemolytic and anti-biofilm assays. After 3 days and 7 days, the cell viability of this nanobiocomposite scaffold was 65.5% and 60.5% respectively. The hemolytic effect was below 20%. Furthermore, the presence of silk fibroin and Mg(OH)2 nanoparticles allowed to enhance the anti-biofilm activity, inhibiting the P. aeruginosa biofilm formation.
Read full abstract