Tautomeric effects in the UV-absorption of trans-urocanic acid in the gas phase are investigated by means of quantum chemical calculations of sixteen tautomers at different levels, followed by absorption cross section simulations. It is shown that several trans tautomers give significant contributions to the total spectrum and that cis tautomers should not contribute to the spectrum at room temperature. The spectra of tautomers protonated at the N1 site of the imidazole ring are strongly red shifted in comparison to the spectra of tautomers protonated at the N3 site. As a consequence, excitation of the first absorption band at different wavelengths produces very different tautomeric populations. This effect helps to explain specific features observed in dispersion emission spectroscopy as well as the anomalous photophysics of urocanic acid.