Abstract

Calcineurin/NFAT signaling is involved in multiple aspects of skeletal muscle development and disease. The myogenic basic helix-loop-helix transcription factors, MyoD, myogenin, Myf5, and MRF4 specify the myogenic lineage. Here we show that calcineurin/NFAT (nuclear factor of activated T cells) signaling is required for primary myogenesis by transcriptional cooperation with the basic helix-loop-helix transcription factor MyoD. Calcineurin/NFAT signaling is involved in myogenin expression in differentiating myoblasts, where the myogenic regulatory factor MyoD synergistically cooperates with NFATc2/c3 at the myogenin promoter. Using gel shift and chromatin immunoprecipitation assays, we identified two conserved NFAT binding sites in the myogenin promoter that were occupied by NFATc3 upon skeletal muscle differentiation. The transcriptional integration between NFATc3 and MyoD is crucial for primary myogenesis in vivo, as myogenin expression is weak in myod:nfatc3 double null embryos, whereas myogenin expression is unaffected in embryos with null mutations for either factor alone. Thus, the combined findings provide a novel transcriptional paradigm for the first steps of myogenesis, where a calcineurin/NFATc3 pathway regulates myogenin induction in cooperation with MyoD during myogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.