Abstract

The development of myoblasts is regulated by various growth factors as well as by intrinsic muscle-specific transcriptional factors. In this study, we analyzed the roles for STAT3 in the growth and differentiation of myoblasts in terms of cell cycle regulation and interaction with MyoD using C2C12 cells. Here we found that STAT3 inhibited myogenic differentiation induced by low serum or MyoD as efficiently as the Ras/mitogen-activated protein kinase cascade. As for this mechanism, we found that STAT3 not only promoted cell cycle progression through the induction of c-myc but also inhibited MyoD activities through direct interaction. STAT3 inhibited not only DNA binding activities of MyoD but also its transcriptional activities. However, the inhibited transcriptional activities were restored by the supplement of p300/CBP and PCAF, suggesting that STAT3 might deprive MyoD of these transcriptional cofactors. In addition, we found that MyoD inhibited DNA binding activities of STAT3, thereby inhibiting STAT3-dependent cell growth and survival of Ba/F3 cells. These results suggest that the development of muscle cells is regulated by the coordination of cytokine signals and intrinsic transcription factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.