Abstract
Protonated base pairs were recently implicated in the context of DNA proton transfer and charge migration. The effects of protonating different sites of the guanine-cytosine (GC) base pair are studied here by using the DZP++ B3LYP density functional method. Optimized structures for the protonated GC base pair are compared with those of parent GC and the neutral hydrogenated GC radical (GCH). Proton and hydrogen-atom additions significantly disturb the structure of the GC base pair. However, the structural perturbations arising from protonation are often less than those arising from hydrogenation of GC. Protonation of the GC base pair causes significant strengthening of the interstrand hydrogen bonds and a concomitant increase in the base dissociation energies. The adiabatic ionization potentials (AIPs), vertical ionization potentials (VIPs), and proton affinities (PAs) for the different protonation sites of the GC base pair are predicted. The N7 site of guanine is the preferred site for protonation of the GC base pair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.