Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent chronic liver disease characterized by an elusive etiology. In its advanced stages, this condition can pose life-threatening implications. Mitochondrial dysfunction due to its impact on hepatic lipid homeostasis, cytokine release, ROS production, and cell death, contributes to the pathogenesis of NAFLD. Previous research reveals a direct link between NAFLD genetic predictors and mitochondrial dysfunction. The emphasis on the D-loop stems from its association with impaired mtDNA replication, underscoring its crucial role in NAFLD progression. We included 38 Iranian NAFLD patients (comprising 16 patients with non-alcoholic fatty liver [NAFL] and 22 patients with non-alcoholic steatohepatitis [NASH]), with matched blood and liver tissue samples collected from each to compare variations in the mitochondrial D-loop sequence within samples. The mitochondrial DNA (mtDNA) D-loop region was amplified using PCR, and variations were identified through sequencing. The resultant sequences were compared with the reference sequence of human mtDNA available in the MITOMAP Database for comparative analysis. In this study, 97 somatic mutations in the mtDNA D-loop region were identified in NAFLD patients. Our study revealed significant difference between the NAFLD patients and control group in 13 detected mutations (P ≤ 0.05). Novel mutations were discovered in hepatic tissues, while mutation 16220-16221ins C was found in both tissues and blood. A significant difference was found in the distribution of D310 and mt514-mt523 (CA)n repeat variations between NAFLD patients and the control group (P < 0.001). C to T and T to C transitions were the prevalent substitution among patients. Identification of the 16220-16221ins C mutation in both blood and tissue samples from NAFLD patients holds substantial promise as a potential diagnostic marker. However, further research is imperative to corroborate these findings.
Read full abstract