Logs require multiple verifications to ensure accurate volume and quantity measurements. Log end detection is a crucial step in measuring log volume and counting logs. Currently, this task primarily relies on the Mask R-CNN instance segmentation model. However, the Feature Pyramid Network (FPN) in Mask R-CNN may compromise accuracy due to feature redundancy during multi-scale fusion, particularly with small objects. Moreover, counting logs in a single image is challenging due to their large size and stacking. To address the above issues, we propose an improved log segmentation model based on Cascade Mask R-CNN. This method uses ResNet for multi-scale feature extraction and integrates a hierarchical Convolutional Block Attention Module (CBAM) to refine feature weights and enhance object emphasis. Then, a Region Proposal Network (RPN) is employed to generate log segmentation proposals. Finally, combined with Deep SORT, the model tracks log ends in video streams and counts the number of logs in the stack. Experiments demonstrate the effectiveness of our method, achieving an average precision (AP) of 82.3, APs of 75.3 for small, APm of 70.9 for medium, and APl of 86.2 for large objects. These results represent improvements of 1.8%, 3.7%, 2.6%, and 1.4% over Mask R-CNN, respectively. The detection rate reached 98.6%, with a counting accuracy of 95%. Compared to manually measured volumes, our method shows a low error rate of 4.07%.
Read full abstract