Abstract
The safeguarding of online services and prevention of unauthorized access by hackers rely heavily on user authentication, which is considered a crucial aspect of security. Currently, multi-factor authentication is used by enterprises to enhance security by integrating multiple verification methods rather than relying on a single method of authentication, which is considered less secure. Keystroke dynamics is a behavioral characteristic used to evaluate an individual’s typing patterns to verify their legitimacy. This technique is preferred because the acquisition of such data is a simple process that does not require any additional user effort or equipment during the authentication process. This study proposes an optimized convolutional neural network that is designed to extract improved features by utilizing data synthesization and quantile transformation to maximize results. Additionally, an ensemble learning technique is used as the main algorithm for the training and testing phases. A publicly available benchmark dataset from Carnegie Mellon University (CMU) was utilized to evaluate the proposed method, achieving an average accuracy of 99.95%, an average equal error rate (EER) of 0.65%, and an average area under the curve (AUC) of 99.99%, surpassing recent advancements made on the CMU dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.