This work explores the data reuse properties of full-search block-matching (FSBM) for motion estimation (ME) and associated architecture designs, as well as memory bandwidth requirements. Memory bandwidth in high-quality video is a major bottleneck to designing an implementable architecture because of large frame size and search range. First, the memory bandwidth in ME is analyzed and the problem is solved by exploring data reuse. Four levels are defined according to the degree of data reuse for previous frame access. With the highest level of data reuse, one-access for frame pixels is achieved. A scheduling strategy is also applied to data reuse of the ME architecture designs and a seven-type classification system is developed that can accommodate most published ME architectures. This classification can simplify the work of designers in designing more cost-effective ME architectures, while simultaneously minimizing memory bandwidth. Finally, a FSBM architecture suitable for high quality HDTV video with a minimum memory bandwidth feature is proposed. Our architecture is able to achieve 100% hardware efficiency while preserving minimum I/O pin count, low local memory size, and bandwidth.
Read full abstract