This study focused on designing an ultra-wideband metamaterial absorber, consisting of layers of Mn (manganese) and MoO3 (molybdenum trioxide) arranged in a planar interleaving pattern, with a matrix square-shaped Ti (titanium) on the top MoO3 layer. Key features of this research included the novel use of Mn and MoO3 in a planar interleaving configuration for designing an ultra-wideband absorber, which was rarely explored in previous studies. MoO3 thin film served as the fundamental material, leveraging its favorable optical properties and absorption capabilities in the infrared spectrum. Alternating layers of Mn and MoO3 were adjusted in thickness and order to optimize absorptivity across desired wavelength ranges. Another feature is that the Mn and MoO3 materials in the investigated absorber had a planar structure, which simplified the manufacturing of the absorber. Furthermore, the topmost layer of square-shaped Ti was strategically placed to enhance the absorber’s bandwidth and efficiency. When the investigated absorber lacked a Ti layer, its absorptivity and bandwidth significantly decreased. This structural design leveraged the optical properties of Mn, MoO3, and Ti to significantly expand the absorption range across an ultra-wideband spectrum. When the Ti height was 280 nm, the investigated absorber exhibited a bandwidth with absorptivity greater than 0.9, spanning from the near-infrared (0.80 μm) to the mid-infrared (9.07 μm). The average absorptivity in this range was 0.950 with a maximum absorptivity of 0.989. Additionally, three absorption peaks were observed at 1010, 2510, and 6580 nm. This broad absorption capability makes it suitable for a variety of optical applications, ranging from near-infrared to mid-infrared wavelengths, including thermal imaging and optical sensing.
Read full abstract