Abstract

Silicon has dimensional limitations in following Moore’s law; thus, new 2D materials complementing Silicon are being researched. Molybdenum disulfide (MoS2) is a prospective material anticipated to bridge the gap to complement Silicon and enhance the performances of semiconductor devices and embedded systems in the package. For a synthesis process to be of any relevance to the industry. it needs to be at the wafer scale to match existing Silicon wafer-processing standards. Atomic Layer Deposition (ALD) is one of the most promising techniques for synthesizing wafer-scale monolayer MoS2 due to its self-limiting, conformal, and low-temperature characteristics. This paper discusses the wafer-scale ALD synthesis of Molybdenum trioxide (MoO3) using Mo (CO)6 as a precursor with Ozone as a reactant. An ALD-synthesized wafer-scale MoO3 thin film was later sulfurized through Chemical Vapor Deposition (CVD) to transform into stoichiometric MoS2, which was evaluated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The roles of activation energy and first-order reaction kinetics in determining the ALD recipe parameters of the pulse time, reactor temperature, and purge time are explicitly discussed in detail. Discretized pulsing for developing one-cycle ALD for monolayer growth is suggested. Remedial measures to overcome shortcomings observed during this research are suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.