Harmonic maps from Riemann surfaces arise from a conformally invariant variational problem. Therefore, on one hand, they are intimately connected with moduli spaces of Riemann surfaces, and on the other hand, because the conformal group is noncompact, constitute a prototype for the formation of singularities, the so-called bubbles, in geometric analysis. In theoretical physics, they arise from the nonlinear sigma -model of quantum field theory. That model possesses a supersymmetric extension, coupling a harmonic map like field with a nonlinear spinor field. In the physical model, that spinor field is anticommuting. In this contribution, we analyze both a mathematical version with a commuting spinor field and the original supersymmetric version. Moreover, this model gives rise to a further field, a gravitino, that can be seen as the supersymmetric partner of a Riemann surface metric. Altogether, this leads to a beautiful combination of concepts from quantum field theory, structures from Riemannian geometry and Riemann surface theory, and methods of nonlinear geometric analysis.