Abstract
The moduli space of Riemann surfaces of genus $g\geq 2$ is (up to a finite \'etale cover) a complex manifold and so it makes sense to speak of its Dolbeault cohomological dimension. The conjecturally optimal bound is $g-2$. This expectation is verified in low genus and supported by Harer's computation of its de Rham cohomological dimension and by vanishing results in the tautological intersection ring. In this paper we prove that such dimension is at most $2g-2$. We also prove an analogous bound for the moduli space of Riemann surfaces with marked points. The key step is to show that the Dolbeault cohomological dimension of each stratum of translation surfaces is at most $g$. In order to do that, we produce an exhaustion function whose complex Hessian has controlled index: the construction of such a function relies on some basic geometric properties of translation surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.