Abstract
We investigate the dynamics of the Teichmüller modular group on the Teichmüller space of a Riemann surface of infinite topological type. Since the modular group does not necessarily act discontinuously, the quotient space cannot inherit a rich geometric structure from the Teichmüller space. However, we introduce the set of points where the action of the Teichmüller modular group is stable, and we prove that this region of stability is generic in the Teichmüller space. By taking the quotient and completion with respect to the Teichmüller distance, we obtain a geometric object that we regard as an appropriate moduli space of the quasiconformally equivalent complex structures admitted on a topologically infinite Riemann surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.