AbstractMany charged organic molecules behave as persistent and hazardous pollutants with harmful effects on human health and ecosystems. They are widely distributed related to their charged molecular structure that provides water solubility. In order to track the fate and behavior of such pollutants, charged dyes with specific absorption in the visible spectra serve as convenient model compounds. We provide a platform of smart adsorbers that efficiently remediate positively and negatively charged dyes (crystal violet and Amaranth) from water. Metal oxide nanoparticles serve as a core with an intrinsically large surface area. The surface potential was tuned towards positive or negative by decorating the cores with self‐assembled monolayers of dedicated long‐chained phosphonic acid derivatives. Selective remediation of the dyes was obtained with corresponding oppositely charged core‐shell nanoparticles. Mixed dye solution can be cleaned by a cascade approach or by applying both particle systems simultaneously. The removal efficiency was determined as a function of particle concentration via UV‐spectroscopy. The results of remediation experiments at different pH values and using superparamagnetic iron oxide nanoparticle cores lead to a simple process with recycling capability.