Abstract
The environment and human health are in danger due to the long-term enrichment and buildup of organic pesticides, dyes, and harmful microbes in wastewater. The development of functional materials that are efficient for treating wastewater remains a significant problem. Eco-friendly hexagonal spindle-shaped Fe-MOFs (Hs-FeMOFs) were created in this study under the influence of cationic copolymer (PMSt). The mechanism of crystal growth and development of its unique morphology were described after looking into impact factors for the ideal circumstances and being characterized by XRD, TEM, XPS, and other techniques. It revealed that Hs-FeMOFs possess an enormous supply of adsorption active sites, a strong electropositivity, and the nanometer tip. Then, typical organic pollutants, such as herbicides and mixed dyes, as well as biological pollutants bacteria, were chosen to assess its efficacy in wastewater treatment. It was discovered that the pendimethalin could be quickly removed in wastewater and the removal rate reached 100% within 10min. In separation of mixed dyes, the retention rate of malachite green (MG) reached 92.3% in 5min and with a minimum inhibitory concentration of 0.8mg/mL and demonstrated strong activity due to the presence of cationic copolymers. In actual water matrix, Hs-FeMOF could also play excellent adsorption and antibacterial activity. In summary, a novel, environmentally friendly MOF material with good activity was successfully created by cationic copolymer induction. It offers a fresh approach to develop functional materials in wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.