Abstract

Environmental remediation in the presence of robust semiconductor photocatalysts by utilizing renewable energy sources is of keen interest among researchers. In this study, we synthesize a BiVO4/P-g-C3N4 semiconductor heterojunction photocatalytic system through a hydrothermal route followed by utilizing a total-solvent evaporation method. The optical and electronic properties of the as-prepared heterojunction are characterized via various spectroscopic techniques. Rhodamine B (RhB) and Congo Red (CR) are used as synthetic colorants to evaluate the photocatalytic performances of BiVO4/P-g-C3N4. In addition, the chemical environment of the photocatalyst and its mechanistic pathways are confirmed through X-ray photoelectron spectroscopy and electrochemical Mott–Schottky analysis. The BiVO4/P-g-C3N4 photocatalyst shows higher photodegradation (96.94%) of the mixed synthetic dyes under simulated solar-light irradiation. The as-synthesized BiVO4/P-g-C3N4 heterojunction significantly promotes the quick separation of photoexcited carriers due to the excellent synergetic properties, the extended light absorption, and the photoelectrochemical response. Furthermore, a possible type-II charge transfer mechanism is adopted for the BiVO4/P-g-C3N4 system after investigating the band potentials, active species, and charge carrier migration over the heterojunction interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call