Abstract

In this work, pristine Cu2O and Au nanoparticle modified Cu2O (Au/Cu2O) spherical nanocomposites were prepared by a simple redox method at room temperature. The as-prepared Cu2O nanospheres with diameters of 150–200 nm show relatively large surface area. The dye removal abilities of the pure Cu2O and the Au/Cu2O nanocomposites were tested by evaluating their adsorption and photocatalytic activities towards different aromatic molecules (e.g., Congo red (CR), Methyl orange (MO), Methyl blue (MB), Rhodamine B (RhB)). The experimental results indicate that the Au/Cu2O nanocomposites exhibit much superior adsorption and photocatalytic properties to the pristine Cu2O nanospheres. Among the catalysts, 1 wt% Au/Cu2O nanocomposite shows the best removal abilities to various dyes. Besides, the removal abilities towards these dyes are quite different from each other. For deep understanding of the adsorption mechanism, molecular dynamics (MD) caculations were conducted to investigate the adsorption energy of the Cu2O spheres by simulating the porous structure and Au modification. The calculation results indicate that CR and MO are chemically adsorbed on the Cu2O materials while the adsorption of MB and RhB are physical adsorption, which are well consistent with the experimental results. This study demonstrates the porous Cu2O based nanocomposites are promising materials with high adsorption and solar light-photocatalytic performance. In the meanwhile, the underlying mechanism on the superior dye removal abilities of Au modified Cu2O nanospheres were systematically discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.