Abstract

In this study, longan seeds - an agricultural by-product was used to fabricate activated carbon (LSAC) through two-step pyrolysis with pre-carbonization at low temperature in the first step and then activation by H3PO4. LSAC with large surface area and porous structure exhibits an excellent capacity of absorption towards both cationic dyes (methylene blue (MB), rhodamine-B (RhB)) and anionic dyes (methyl orange (MO), congo red (CR)). Experimental data can be described well by the pseudo-second kinetic model. The maximum adsorption capacity based on Langmuir isotherm model was found as 502.84; 397.77; 464.66 and 350.64 mg.g−1 for MB, RhB, MO and CR, respectively. The adsorption of MB, RhB and CR on LSAC is spontaneous and endothermic, while that for MO is spontaneous but exothermic. Furthermore, the adsorption mechanism of dyes on LSAC was also studied showing that it can occur by electrostatic interaction, hydrogen bonding, the filling of pores involving the interaction between dye ions with specific functional groups such as −OH, −COOH, −NH2 and −PO43- on the LSAC surface. These results suggest that LSAC material may be envisaged as a promising adsorbent for treatment of wastewater in textile industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call