Adequate energy supply is a crucial factor for maintaining the production performance in early lactating cows. Adding fatty acids to diets can improve energy supply, while the effect could be related to the chain length and degree of saturation of fatty acids. This study was conducted to evaluate the effect of different ratios of palmitic acid (C16:0) to oleic acid (cis-9 C18:1) on the production performance, nutrient digestibility, blood metabolites and milk fatty acids profile in early lactating dairy cows. Seventy-two multiparous Holstein cows (63.5 ± 2.61 d in milk) blocked by parity (2.39 ± 0.20), body weight (668.3 ± 20.1 kg), body condition score (3.29 ± 0.06), and milk yield (47.9 ± 1.63 kg) were used in a completely randomized design. Cows were divided into 3 groups with 24 cows in every group. Cows in 3 treatments were provided iso-energy and iso-nitrogen diets, whereas the C16:0 to cis-9 C18:1 ratio was different: (1) 90.9% C16:0 + 9.1% cis-9 C18:1 (90.9:9.1); (2) 79.5% C16:0 + 20.5% cis-9 C18:1 (79.5:20.5); (3) 72.7% C16:0 + 27.3% cis-9 C18:1 (72.7:27.3). Fatty acids were added at 1.3% in dry matter basis. Although the dry matter intake fat-corrected milk yield and energy-corrected milk yield were not affected, the milk yield, milk protein yield and feed efficiency increased linearly with the increasing of cis-9 C18:1 ratio. The milk protein percentage and milk fat yield did not differ among treatments, whereas the milk fat percentage tended to decrease linearly with the increasing of cis-9 C18:1 ratio. The lactose yield increased linearly and lactose percentage tended to increase linearly with increasing cis-9 C18:1 ratio, whereas the percentage of milk total solids and somatic cell count decreased linearly. Though the changes of body condition score were not affected by treatments, the body weight loss decreased linearly with the increasing of cis-9 C18:1 ratio. The effect of treatment on nutrient digestibility was limited, except a linear increase in ether extract and neutral detergent fiber digestibility with the increasing of cis-9 C18:1 ratio. There was a linear increase in the concentrations of plasma glucose, whereas the triglyceride and nonesterified fatty acid concentration decreased linearly with the increasing of cis-9 C18:1 ratio. As the cis-9 C18:1 ratio increased, the concentration of de novo fatty acids decreased quadratically, while the mixed and preformed fatty acids increased linearly. In conclusion, increasing cis-9 C18:1 ratio could increase production performance and decrease body weight loss by increasing nutrient digestibility, and the ratio had the most powerful beneficial effect on early lactating cows suggested by 72.7:27.3.