Abstract

The origin of life required membrane-bound compartments to allow the separation and concentration of internal biochemistry from the external environment and establish energy-harnessing ion gradients. Long-chain amphiphilic molecules, such as fatty acids, appear strong candidates to have formed the first cell membranes although how they were first generated remains unclear. Here we show that the reaction of dissolved hydrogen and bicarbonate with the iron-rich mineral magnetite under conditions of continuous flow, alkaline pH and relatively low temperatures (90 °C) generate a range of functionalised long-chain aliphatic compounds, including mixed fatty acids up to 18 carbon atoms in length. Readily generated membrane-forming amphiphilic organic molecules in the first cellular life may have been driven by similar chemistry generated from the mixing of bicarbonate-rich water (equilibrated with a carbon dioxide-enriched atmosphere) with alkaline hydrogen-rich fluids fed by the serpentinisation of the Earth’s iron-rich early crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.