Spring–dashpot models have long been used to simulate the mechanical behavior of polymers, but their usefulness is limited because multiple model parameter values can reproduce the experimental data. In view of this limitation, this study explores the possibility of improving uniqueness of parameter values so that the parameters can be used to establish the relationship between deformation and microstructural changes. An approach was developed based on stress during the loading, relaxation, and recovery of polyethylene. In total, 1000 sets of parameter values were determined for fitting the data from the relaxation stages with a discrepancy within 0.08 MPa. Despite a small discrepancy, the 1000 sets showed a wide range of variation, but one model parameter, σv,L0, followed two distinct paths rather than random distribution. The five selected sets of parameter values with discrepancies below 0.04 MPa were found to be highly consistent, except for the characteristic relaxation time. Therefore, this study concludes that the uniqueness of model parameter values can be improved to characterize the mechanical behavior of polyethylene. This approach then determined the quasi-static stress of four polyethylene pipes, which showed that these pipes had very close quasi-static stress. This indicates that the uniqueness of the parameter values can be improved for the spring–dashpot model, enabling further study using spring–dashpot models to characterize polyethylene’s microstructural changes during deformation.
Read full abstract