Abstract

Diffusion tensor imaging (DTI) is susceptible to partial volume effects from free water, which can be corrected by using bi-tensor free water imaging (FWI). This approach may improve the evaluation of microstructural changes associated with Wilson's disease (WD). To investigate microstructural changes in white matter of WD using DTI and FWI. Prospective. Nineteen neurological WD (7 female, 31.68 ± 7.89 years), 10 hepatic WD (3 female, 29.67 ± 13.37 years), and 25 healthy controls (13 female, 29.5 ± 7.7 years). 3-T, spin-echo echo-planar imaging diffusion-weighted imaging, T1-weighted, T2-weighted, fluid-attenuated inversion recovery. Various diffusion metrics, including mean diffusivity (MD), radial diffusivity (RD), fractional anisotropy (FA), axial diffusivity (AD), free water, and free water-corrected metrics (MDT, RDT, FAT, and ADT) were estimated and compared across entire white matter skeleton among neurological WD, hepatic WD, and controls. Voxel-wise tract-based spatial statistics and region of interest (ROI) analysis based on white matter atlas were performed. Additionally, partial correlation analysis was conducted to assess the relationship between FWI indices in ROIs and clinical indicators. One-way analysis of variance, family-wise error correction for multiple comparisons, and Bonferroni correction for post hoc comparisons. A P-value <0.05, corrected for multiple comparisons, was considered statistically significant. Our study found significantly lower FA and higher MD, AD, and RD across most of white matter skeleton in neurological WD. Decreased FAT and increased MDT, ADT, and RDT were observed only in limited white matter areas compared to DTI indices. Additionally, a significant relationship was found between Unified WD Rating Scale neurological subscale of neurological WD and free water (r = 0.613) in middle cerebellar peduncle, ADT (r = -0.555) in superior cerebellar peduncle, RDT (r = 0.655), and FAT (r = -0.660) in posterior limb in internal capsule. FWI may allow a more precise evaluation of microstructural changes in WD than conventional DTI, with FWI metrics potentially correlating with clinical severity scores of WD patients. 2 TECHNICAL EFFICACY: Stage 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.