Abstract Kvačekite is a new mineral species discovered in a sample collected from the now abandoned Bukov uranium mine, western Moravia, Czech Republic. It occurs as rare anhedral grains, up to 15 μm in size, associated with nickeltyrrellite, tyrrellite, berzelianite, hakite-(Zn), hakite-(Cd), eucairite, clausthalite, and gold in calcite gangue. In reflected light, kvačekite is white with a faint yellowish shade; bireflectance, pleochroism and anisotropy are absent. Internal reflections were not observed. Reflectance values for the four COM wavelengths for kvačekite in air [R (%) (λ in nm)] are: 54.9 (470); 53.5 (546); 52.6 (589); and 52.2 (650). The empirical formula, based on electron-microprobe analyses (EPMA), is (Ni0.95Cu0.04Co0.03)Σ1.02Sb1.00(Se0.97S0.01)Σ0.98. The ideal formula is NiSbSe, which requires (in wt.%) Ni 22.63, Sb 46.93, Se 30.44, total 100.00. Kvačekite is cubic, P213, with unit-cell parameters a = 6.09013(13) Å, V = 225.881(15) Å3 and Z = 4. The strongest reflections in the X-ray powder diffraction pattern of synthetic kvačekite [d, Å (I) hkl] are: 3.0458 (11) 200; 2.7242 (100) 201, 210; 2.4867 (71) 211; 1.8632(39) 311; 1.6277(29) 321, 312; and 1.3290 (13) 421. Given the similarity with ullmannite, NiSbS, the crystal structure was refined from the powder X-ray diffraction data starting from those atomic coordinates using the synthetic analogue of kvačekite. Its crystal structure is formed by corner-sharing [NiSb3Se3] octahedra which form a three-dimensional network. The identity of the natural kvačekite and synthetic cubic NiSbSe were confirmed by a study of their chemical composition, reflectance measurements, Raman spectroscopy and electron back-scattered diffraction (EBSD) measurements on the mineral. Kvačekite is named after Milan Kvaček (1930–1993), a prominent Czech mineralogist. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2023-095).