Abstract

Early transition-metal chalcogenides have garnered recent attention for their optoelectronic properties for solar energy conversion. Herein, the first Zr-/Hf-chalcogenides with a main group cation, Ba9Hf3Sn2Se19 (1) and Ba8Zr2SnSe13(Se2) (2), have been synthesized. The structure of 1 is formed from isolated SnSe44- tetrahedra and distorted HfSe6 octahedra. The latter condense via face-sharing trimeric motifs that are further vertex-bridged into chains of 1∞[Hf(1)2Hf(2)Se11]10-. The structure of 2 is comprised of SnSe44- tetrahedra, Se22- dimers, and face-sharing dimers of distorted ZrSe6 octahedra. These represent the first reported examples of Hf-/Zr-chalcogenides exhibiting face-sharing octahedra with relatively short Hf-Hf and Zr-Zr distances. Their preparation in high purity is inhibited by their low thermodynamic stability, with calculations showing small calculated ΔUdec values of +7 and +9 meV atom-1 for 1 and 2, respectively. Diffuse reflectance measurements confirm the semiconducting nature of 1 with an indirect band gap of ∼1.4(1) eV. Electronic structure calculations show that the band gap absorptions arise from transitions between predominantly Se-4p valence bands and mixed Hf-5d/Sn-5p or Zr-4d/Sn-5p conduction bands. Optical absorption coefficients were calculated to be more than ∼105 cm-1 at greater than 1.8 eV. Thus, promising optical properties are demonstrated for solar energy conversion within these synthetically challenging chemical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call