Abstract
The preparation of an environmentally friendly and efficient flocculant for solid-liquid separation in industrial wastewater is highly important. In this study, a novel cationic flocculant (AL-g-PAMA) was synthesized by a thermal initiation method using alkali lignin (AL) as the main chain and acrylamide (AM) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) as the grafted side chains. The structure, thermal stability, and surface morphology of the copolymers were investigated by various characterization methods. The results indicated the successful synthesis of AL-g-PAMA. AL-g-PAMA was applied to improve solid-liquid separation in kaolin suspensions. The results showed that AL-g-PAMA had excellent flocculation-sedimentation and dewatering efficiency. When the dosage of AL-g-PAMA #5 was 600.0 g/t(s), the thickness of the compressed layer was 2.2 cm, the floc settling velocity was 24.1 cm/min, and the transmittance of the supernatant was 84.0%. The moisture content of the filter cake decreased from 55.0% to 43.4% after treatment with AL-g-PAMA #5. The results of zeta potential and focused beam reflectance measurement (FBRM) analysis indicated that bridging and electroneutralization were the main flocculation mechanisms. Therefore, this study extends the potential for using lignin as a bioflocculant and provides a feasible approach to efficiently purify high-turbidity wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.