The absence of robust quantitative evaluation methods has led to insufficient knowledge of models capability on the rapid intensification (RI) prediction of tropical cyclones (TCs). In this study, we propose a method and define some indicators aiming to evaluate model capability on predicting RI in a more accurate manner. An assessment of model predictive capability on RI of TCs based on 10 years of operational forecasts has been conducted using different RI criteria. The Tropical Regional Atmosphere Model for the South China Sea of China Meteorological Administration (CMA-TRAMS) and the European Centre for Medium-Range Weather Forecasts (ECMWF) high resolution (HRES) operational forecasts were used. Analysis results revealed that the criterion of 6-hour sea level pressure (SLP) change is more appropriate to be used in RI operational forecast. The maximum lead time (MLT) of CMA-TRAMS and HRES was 72 and 78 h, and the maximum deviation of RI occurrence time of CMA-TRAMS and HRES was 48 h delay and 24 h ahead, respectively. Overall results suggest that the model predictive capability of RI is currently limited, and both models have inadequate capability in providing sufficient heat and energy to support RI in the long run. A tendency of CMA-TRAMS to have a lag in RI occurrence time was also demonstrated due to an air-sea interaction lag resulting from the fixed skin sea surface temperature used. Results of the present study provide insights and could be the basis for future efforts on improving parametrization schemes for properly describing RI process of TCs.