Abstract

Abstract Quantitative precipitation nowcasts (QPN) can improve the accuracy of flood forecasts, especially for lead times up to 12 h, but their evaluation depends on a variety of factors, namely, the choice of the hydrological model and the benchmark. We tested three precipitation nowcasting techniques based on radar observations for the disastrous mid-July 2021 event in seven German catchments (140–1670 km2). Two deterministic [advection-based and spectral prognosis (S-PROG)] and one probabilistic [Short-Term Ensemble Prediction System (STEPS)] QPN with a maximum lead time of 3 h were used as input to two hydrological models: a physically based, 3D-distributed model (ParFlowCLM) and a conceptual, lumped model (GR4H). We quantified the hydrological added value of QPN compared with hydrological persistence and zero-precipitation nowcasts as benchmarks. For the 14 July 2021 event, we obtained the following key results. 1) According to the quality of the forecasted hydrographs, exploiting QPN improved the lead times by up to 4 h (8 h) compared with adopting zero-precipitation nowcasts (hydrological persistence) as a benchmark. Using a skill-based approach, obtained improvements were up to 7–12 h depending on the benchmark. 2) The three QPN techniques obtained similar performances regardless of the applied hydrological model. 3) Using zero-precipitation nowcasts instead of hydrological persistence as benchmark reduced the added value of QPN. These results highlight the need for combining a skill-based approach with an analysis of the quality of forecasted hydrographs to rigorously estimate the added value of QPN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.