Abstract

Freight transport is one of the most important sectors of the national economy. The increase in the efficiency of the logistics company is ensured by the accurate organization of supplies, as well as the timely delivery of goods to the points of the route. That is why there is a need to optimize the delivery of goods. A delivery task is a transport task of delivering oversized cargo from a distribution center to a multitude of recipients located in the area of operation of a transport company. It is a generalization of the well-known traveling salesman problem, from which it differs in the condition of the limited carrying capacity of the vehicle used and, as a consequence, the need to repeatedly return to the base to replenish the transported cargo. This article proposes to supplement the traditional formulation of the problem with the requirement to distribute customers among several simultaneously operating vehicles (TC) so that the maximum lead time is minimal. This takes into account not only the interests of the delivery contractor, but also the customers. The solution to the problem consists of two stages. On the first one, in some known way, rational ring routes for each vehicle are determined, minimizing the total mileage. Based on the results of the stage, the time for passing each route is calculated. At the second stage, the problem of reducing the maximum travel time of routes is solved by using several vehicles delivering at the same time. To do this, it is necessary to optimally distribute vehicles along individual routes. It is proposed to use the algorithm for solving the well-known problem "Packing items into containers" to solve this problem. This problem belongs to the class of NP-hard problems in the strong sense and does not have an exact solution algorithm for arbitrary input data. This paper proposes a complex solution method combining the well-known First fitted (FF) algorithm, the original First fitted with reordering (FFR) algorithm, and S. Martello's lower bounds and P. Thoth to control the optimality of the obtained solution. Test calculations have shown the effectiveness of this approach for a moderate dimension of the problem.

Highlights

  • Дано: n – число клиентов, которым необходимо доставить грузы; q – вектор заказов, определяющий количество груза, доставляемого каждому клиенту; M – матрица расстояний между всеми клиентами и базой, а также клиентов между собой

  • This paper proposes a complex solution method combining the well-known First fitted (FF) algorithm, the original First fitted with reordering (FFR) algorithm, and S

  • Bin packing and cutting stock problems: Mathematical models and exact algorithms // European Journal of Operational Research

Read more

Summary

For citation

Поэтому дополним сформулированную задачу следующим условием: требуется распределить клиентов по нескольким одновременно работающим ТС грузоподъемности C, чтобы максимальное время выполнения заказа было минимально. Поскольку время реализации индивидуальных маршрутов в общем случае различается, то задача будет состоять в том, чтобы оптимально распределить ТС по индивидуальным маршрутам для минимизации tmax. Реальная ситуация отличается от сформулированной канонической задачи чаще всего тем, что помимо пройденного расстояния необходимо каким-то образом учитывать и максимальное время развозки. Проблема, очевидно, состоит в том, чтобы оптимально распределить ТС по индивидуальным маршрутам для минимизации времени выполнения всего заказа. Е. дающим лучший результат в смысле минимума целевой функции можно получить, если заметить, что наихудшей для алгоритма FF будет ситуация, когда в упорядочении объектов предметы с меньшими размерами идут раньше предметов с большими размерами. Результаты расчета по алгоритму «первый подходящий с убыванием» Table 3

ТС vehicle
Вот как выглядит набор таких перестановок

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.