Hemp (Cannabis sativa L.) is grown for cannabinoid oil production in Oregon. During the 2021 and 2022 growing seasons, plants with leaf curling, puckering, chlorotic mosaic, fasciation, and vein clearing were observed in disease surveys of Oregon hemp fields (Fig. 1). Symptoms were present on 1-10% of 2-4-month-old plants in fields located in Benton, Clackamas, Deschutes, Jackson, Josephine, Lane, Linn, Marion, Morrow, and Polk counties between July and September. Leaf and stem samples were collected from 38 symptomatic plants. Symptoms resembled those caused by beet leafhopper-vectored (BLH, Circulifer tenellus Baker) curtovirus or phytoplasma infection. Therefore, total nucleic acids were extracted (Dellaporta et al. 1983) from leaf material, and PCR conducted on all 38 samples to detect curtovirus coat proteins (BCTV-1/2 primers; Rondon et al. 2016) and 16S rRNA of phytoplasmas (nested primers P1/P7 followed by FU/RU; Lorenz et al. 1995). No curtoviruses or phytoplasmas were detected in any samples. Spiroplasma citri is also transmitted by BLH, so PCR was conducted with primers targeting the putative P89 adhesin gene and spiralin gene of S. citri (Yokomi et al. 2008). For all samples, PCR using P89F/R primers resulted in a 707 bp amplicon, and a 675 bp amplicon with Spiralin-f/r primers. PCR products were purified with ExoSapIT (Applied Biosystems, Waltham, MA), and two representative samples (ScH1; ScH2) were Sanger sequenced (EuroFins, Lancaster, PA) in the forward and reverse direction. Pairwise aligned P89 sequences were found to be 99 to 100% (ScH1: 633/637 bp; ScH2: 654/654 bp) identical to S. citri accession KT377386. Aligned/span>spiralin sequences were found to be 99 to 100% (ScH1: 661/664 bp; ScH2: 647/647 bp) identical to S. citri accession CP013197 in the NCBI GenBank Database. All sequences were deposited into GenBank (accession no. OQ969983, OQ992766, OQ969984, OQ969986). Frozen leaf material from one sample was used to culture S. citri according to Lee and Davis (1984). Leaf tissue was surface sterilized for 60 s in 1% NaOCl in 70% ethanol, cut into pieces in LD8 broth, and incubated for 25 min at 25˚C. The solution was passed through a 0.45um filter and incubated for 14 days at 30°C with constant shaking (150 rpm). Then, cultures were centrifuged for 2 min at 12,000 rpm to pelletize, resuspended in 100µL sterile distilled water and passed through a 0.2um filter. From this culture, 2 µL of broth was used as template for both the P89F/R and Spiralin-f/r primer sets. Amplicons were purified and sequenced as above (accession nos. OQ969982, OQ969985). Leaf tissue from both representative samples (ScH1 and ScH2) were positive for S. citri using double antibody sandwich ELISA (Agdia, Inc., Elkhart, IN) following manufacturer instructions. These results from sequencing, culturing, and ELISA testing indicate the hemp samples were infected with S. citri. To our knowledge this is the first report of disease symptoms in hemp associated with S. citri in Oregon and the Pacific Northwest. Infection by S. citri can limit yield by reducing photosynthetic capability of the plant and distortion of plant growth. Other pathogens like curtoviruses and phytoplasmas have also been detected in hemp in Oregon and the U.S. (Hu 2021; Rivedal et al. 2022), and the addition of S. citri associated with disease symptoms indicates a need for BLH management research. This discovery has implications for arid regions with other S. citri hosts including cruciferous plants, carrots, and tree fruit crops, all of which were grown near the sampled hemp fields in this study.