Abstract

AbstractTo improve the hydraulic performance of leaf vein drip irrigation emitters, a combination of a genetic algorithm and numerical simulation was used to investigate the hydraulic characteristics of the model. The minimal flow index is used as the optimization objective to obtain the best design parameters for the flow channel structure. The results show that the leaf vein drip irrigation emitter has a flow index of 0.53, and the structural loss coefficient of the leaf vein drip irrigation emitter is 64.5–70.9 under 50 kPa working pressure, with a good energy dissipation effect. Among the design variables, the flow index (denoted as x) was influenced in the following order: the width of the unit structure f had the largest impact, followed by the vertical distance from the front baffle c, the inlet width a and the length of the unit structure h. The flow index x exhibited a positive correlation with the inlet width a, the vertical distance from the front baffle c and the length of the unit structure h, while it displayed a negative correlation with the width of the unit structure f. The correlation coefficient between the simulated and measured results was 0.994, with an average error of 2%, and the accuracy of the simulation results was high. Notably, the absence of noticeable low‐velocity vortices at the corners and confluence of the leaf vein flow channel indicated excellent resistance to blockage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call