Abstract

Limited information is available on the variation of plant leaf hydraulic traits in relation to soil rock fragment content (RFC), particularly for xerophytes native to rocky mountain areas. In this study, we conducted a field experiment with four gradients of RFC (0, 25, 50 and 75% ν ν-1) on three different xerophytic species (Sophora davidii, Cotinus szechuanensis and Bauhinia brachycarpa). We measured predawn and midday leaf water potential (Ψleaf), leaf hydraulic conductance (Kleaf), Ψleaf induced 50% loss of Kleaf (P50), pressure-volume curve traits and leaf structure. A consistent response of hydraulic traits to increased RFC was observed in three species. Kleaf showed a decrease, whereas P50 and turgor loss point (Ψtlp) became increasingly negative with increasing RFC. Thus, a clear trade-off between hydraulic efficiency and safety was observed in the xerophytic species. In all three species, the reduction in Kleaf was associated with an increase in leaf mass per area. In S. davidii, alterations in Kleaf and P50 were driven by leaf vein density (VLA) and Ψtlp. In C. szechuanensis, Ψtlp and VLA drove the changes in Kleaf and P50, respectively. In B. brachycarpa, changes in P50 were driven by VLA, whereas changes in both Kleaf and P50 were simultaneously influenced by Ψtlp. Our findings suggest that adaptation to increased rockiness necessarily implies a trade-off between leaf hydraulic efficiency and safety in xerophytic species. Additionally, the trade-off between leaf hydraulic efficiency and safety among xerophytic species is likely to result from processes occurring in the xylem and the outside-xylem hydraulic pathways. These findings contribute to a better understanding of the survival strategies and mechanisms of xerophytes in rocky soils, and provide a theoretical basis for the persistence of xerophytic species in areas with stony substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call