Penalized estimation has become an established tool for regularization and model selection in regression models. A variety of penalties with specific features are available and effective algorithms for specific penalties have been proposed. But not much is available to fit models with a combination of different penalties. When modeling the rent data of Munich as in our application, various types of predictors call for a combination of a Ridge, a group Lasso and a Lasso-type penalty within one model. We propose to approximate penalties that are (semi-)norms of scalar linear transformations of the coefficient vector in generalized structured models--such that penalties of various kinds can be combined in one model. The approach is very general such that the Lasso, the fused Lasso, the Ridge, the smoothly clipped absolute deviation penalty, the elastic net and many more penalties are embedded. The computation is based on conventional penalized iteratively re-weighted least squares algorithms and hence, easy to implement. New penalties can be incorporated quickly. The approach is extended to penalties with vector based arguments. There are several possibilities to choose the penalty parameter(s). A software implementation is available. Some illustrative examples show promising results.
Read full abstract