Abstract
One of the popular methods for multi-class classification is to combine binary classifiers. In this paper, we propose a new approach for combining binary classifiers. Our method trains a combining method of binary classifiers using statistical techniques such as penalized logistic regression, stacking, and a sparsity promoting penalty. Our approach has several advantages. Firstly, our method outperforms existing methods even if the base classifiers are well-tuned. Secondly, an estimate of conditional probability for each class can be naturally obtained. Furthermore, we propose selecting relevant binary classifiers by adding the group lasso type penalty in training the combining method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.