Abstract
The problem of regression shrinkage and selection for multivariate regression is considered. The goal is to consistently identify those variables relevant for regression. This is done not only for predictors but also for responses. To this end, a novel relationship between multivariate regression and canonical correlation is discovered. Subsequently, its equivalent least squares type formulation is constructed, and then the well developed adaptive LASSO type penalty and also a novel BIC-type selection criterion can be directly applied. Theoretical results show that the resulting estimator is selection consistent for not only predictors but also responses. Numerical studies are presented to corroborate our theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.