Abstract
Quantile regression can provide more useful information on the conditional distribution of a response variable given covariates while classical regression provides informations on the conditional mean alone. In this paper, we propose a structured quantile estimation methodology in a nonparametric function estimation setup. Through the functional analysis of variance decomposition, the optimization of the proposed method can be solved using a series of quadratic and linear programmings. Our method automatically selects relevant covariates by adopting a lasso-type penalty. The performance of the proposed methodology is illustrated through numerical examples on both simulated and real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.