We demonstrate how algorithm-improved confocal Raman microscopy (ai-CRM), in combination with chemical enhancement by two-dimensional substrates, can be used as an ultrasensitive detection method for rhodamine (R6G) molecules adsorbed from aqueous solutions. After developing a protocol for laser-induced reduction of graphene oxide, followed by noninvasive Raman imaging, a limit of detection (LOD) of 5 × 10–10 M R6G was achieved using ai-CRM. An equivalent subnanomolar LOD was also achieved on another graphene oxide analogue −UV/ozone-oxidized graphene. These record-breaking detection capabilities also enabled us to study the adsorption kinetics and image the spatial distribution of the adsorbed R6G. These findings indicate a strong potential for algorithm-improved graphene-enhanced Raman spectroscopy as a facile method for detecting, imaging, and quantifying trace amounts of adsorbing molecules on a variety of 2D substrates.