Suppression of laser frequency fluctuations is an essential technology for planned interferometric detectors for astrophysical gravitational waves. Because of the low degree of residual frequency noise which is ultimately required, control topologies comprising two or more cascaded loops are favored. One such topology, used in the Laser Interferometer Gravitational-Wave Observatory 40 m interferometer, relied on electro-optic Pockels cell phase correction as a fast actuator for the final stage. This actuation method proved susceptible to spurious amplitude modulation effects, which provided an unintended parasitic feedback path. An alternate arrangement, which achieves comparably effective frequency stabilization without using a phase correcting Pockels cell, was introduced and successfully tested.
Read full abstract