Abstract

We demonstrate theoretically and experimentally self-quenching of the fundamental semiconductor laser frequency fluctuations to a level that is orders of magnitude below the Schawlow-Townes limit for a solitary laser. It is shown that the main operative mechanism is the combined action of a frequency-dependent internal loss and amplitude-to-phase coupling. The internal frequency-dependent loss is introduced by means of spectrally narrow external optical feedback, which provides a strong frequency-dependent dispersion. Linewidth reduction by a factor of 2 x 10(3) is demonstrated by using a narrow Doppler-free Faraday resonance in Cs vapor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.