Abstract Historically, a significant level of mining activity has taken place in the batholite-related metalogenic enclave of Linares (Jaen province, Spain), associated with Pb–Ag, Cu, Zn and Fe sulphides and Ba sulphate mineralization, though mining here has now been abandoned. Additionally, the area features a significant amount of urban, industrial and agricultural activities. These considerations, taken together, explain the need to assess the levels of concentration of trace elements and to determine their relationship with geogenic and anthropogenic factors. For geochemical characterisation of the soil, the region has been divided into 126 grid squares with an area of 1 km2. For each grid square, 32 trace elements have been analysed. Elemental concentrations of Cu, Pb, Zn, As and Mn have been included in statistical analyses. According to the reference levels established by the Regional Government (Junta de Andalucia), soils in a large part of the study area require amendment applications. The comparison of the mean content for each grid square with the reference levels reveals a significant degree of contamination of the soil by Cu (719 mg kg−1), Pb (22,964 mg kg−1) and As (100 mg kg−1) in those grid squares affected by metallurgic activities. By means of factor analysis, four scores have been identified which together account for 80% of the variance observed. The first score is highly correlated with the logarithms of the variables Fe, Th, La, Ti, Al, Na, K, Zr, Y, Nb, Be and Sc. It is a “natural” factor that indicates the type of soil matrix (fundamentally granites and, to a lesser degree, Triassic materials). The second score shows high correlation with the logarithms of the variables Mo, Cu, Pb, Zn, Ag, Co, Mn, As, Cd, Sb, Ba, W and Sn, and is the “metallization” factor related to the mineralization that has been exploited. The third score is mainly determined by the logarithms of the variables Sr, Ca and Mg. This is a “natural” factor that indicates a type of carbonate soil matrix (Miocene). Finally, the fourth factor groups the logarithms of the variables Ni, V and Cr, elements that are associated with the combustion of fossil fuels. Analysis of the patterns of each of the factors identified enabled achieving a global characterisation of the study area. Cluster analysis of the observations showed there to be five clusters relating to the grid squares, differentiated by lithologies and degrees of contamination. These clusters are used to determine the background of granite and to calculate the anomalous load.
Read full abstract