Due to the continuous increase in data traffic, it is becoming imperative to develop communication systems capable of meeting the throughput requirements. Monolithic Opto-Electronic Integrated Circuits (OEICs) are ideal candidates to meet these demands. With that in mind, we propose a compact and computationally efficient model for Uni-Traveling Carrier Photodiodes (UTC-PDs) which are a key component of OEICs because of their high bandwidth and RF output power. The developed compact model is compatible with existing SPICE design software, enabling the design of beyond 5G and terahertz (THz) communication circuits and systems. By introducing detailed physical equations describing, in particular, the dark current, the intrinsic series resistance, and the junction capacitance, the model accurately captures the physical characteristics of the UTC-PD. The model parameter extraction follows a scalable extraction methodology derived from that of the bipolar and CMOS technologies. A detailed description of the de-embedding process is presented. Excellent agreement between the compact model and measurements has been achieved, showing model versatility across various technologies and scalability over several geometries.