Abstract: The objective of this study is to give a summary of machine learning-based techniques for solar irradiation forecasting in this context. Despite the fact that numerous research describe methods like neural networks or support vector regression. Ranking the performance of such methods is difficult because of the diversity of the data collection, time step, forecasting horizon, setup, and performance indicators. The prediction inaccuracy is quite comparable overall. Others write. Global solar radiation recommended utilising ensemble forecasting or hybrid models to improve prediction accuracy. Forecasting the output power of solar systems is required for the smooth operation of the power grid or for the optimal control of the energy flows into the solar system. Prior to projecting the output of the solar system, it is essential to focus on solar irradiance. The two primary categories of methods for predicting the global solar radiation are machine learning algorithms and cloud pictures combined with physical models.
Read full abstract