Abstract
Some analyses state that buildings contribute to overall energy consumption by 20–40%, which, in the context of the recent geopolitical energy crisis, makes them a critical issue to study. Finding solutions for better energy management in buildings can have a significant impact on the energy sector, thus reducing EU energy dependencies and contributing to the fulfillment of the REPowerEU goals. This paper focuses on proposing a simplified model of a residential house considering the main appliances, heating and cooling, a photovoltaic system, and electric vehicle recharging. Weather and solar irradiance forecasts are taken into account. The model predicts the energy demands of a house based on online weather forecasts and the desired indoor temperature. The article also focuses on the analysis of how weather forecast uncertainty affects energy demand prediction. This model can be used to better understand and predict the energy demand of either a single house or a set of houses. A multi-objective optimization approach that takes into account the preferences of users/inhabitants is developed to provide a compromise between the price paid for the electricity and temperature comfort. The authors plan to apply the proposed model to a residential house’s real-time control system. The model will be tuned, its predictions will be tested, and it will be used for energy demand optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.