Abstract
The precise forecast of solar radiation is exceptionally imperative for the steady operation and logical administration of a photovoltaic control plant. This study proposes a hybrid framework (CBP) based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), an enhanced Gaussian process regression with a newly designed physical-based combined kernel function (PGPR), and the backtracking search optimization algorithm (BSA) for solar radiation forecasting. In the CEEMDAN-BSA-PGPR (CBP) model, (1) the CEEMDAN is executed to divide the raw solar radiation into a few sub-modes; (2) PACF (partial autocorrelation coefficient function) is carried out to pick the appropriate input variables; (3) PGPR is constructed to predict each subcomponent, respectively, with hyperparameters optimized by BSA; (4) the final forecasting result is produced by combining the forecasted sub-modes. Four hourly solar radiation datasets of Australia are introduced for comprehensive analysis and several models available in the literature are established for multi-step ahead prediction to demonstrate the superiority of the CBP model. Comprehensive comparisons with the other nine models reveal the efficacy of the CBP model and the superb impact of CEEMDAN blended with the BSA, respectively. The CBP model can produce more precise results compared with the involved models for all cases using different datasets and prediction horizons. Moreover, the CBP model is less complicated to set up and affords extra decision-making information regarding forecasting uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.