Distributed coordination control is the current trend in networked systems and finds prosperous applications across a variety of fields, such as smart grids and intelligent transportation systems. One fundamental issue in coordinating and controlling a large group of distributed and networked agents is the influence of intermittent interagent interactions caused by constrained communication resources. Event-triggered communication scheduling stands out as a promising enabler to strike a balance between the desired control performance and the satisfactory resource efficiency. What distinguishes dynamic event-triggered scheduling from traditional static event-triggered scheduling is that the triggering mechanism can be dynamically adjusted over time in accordance with both available system information and additional dynamic variables. This article provides an up-to-date overview of dynamic event-triggered distributed coordination control. The motivation of dynamic event-triggered scheduling is first introduced in the context of distributed coordination control. Then some techniques of dynamic event-triggered distributed coordination control are discussed in detail. Implementation and design issues are well addressed. Furthermore, this article exemplifies two applications of dynamic event-triggered distributed coordination control in the fields of microgrids and automated vehicles. Several challenges are suggested to direct the future research.
Read full abstract