This brief presents an energy-efficient fully differential 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) with a resolution of 10 bits and a sampling rate of 320 kS/s. The optimal capacitor split and bypass number is analyzed to achieve the highest switching energy efficiency. The common-mode voltage level remains constant during the MSB-capacitor switching cycles. To minimize nonlinearity due to charge averaging voltage offset or DAC array mismatch, an event-triggered error correction method is employed as a redundant cycle for detecting digital code errors within 1 least significant bit (LSB). A test chip was fabricated using the 180-nm CMOS process and occupied a 0.0564-mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> core area. Under a regular 0.65-V supply voltage, the ADC achieved an effective number of bits of 9.61 bits and a figure of merit (FOM) of 6.38 fJ/conversion step, with 1.6-μW power dissipation for a low-frequency input. The measured differential and integral nonlinearity results are within 0.30 LSB and 0.43 LSB, respectively.