Three-dimensional (3D) light-field displays (LFDs) suffer from a narrow viewing angle, limited depth range, and low spatial information capacity, which limit their diversified application. Because the number of pixels used to construct 3D spatial information is limited, increasing the viewing angle reduces the viewpoint density, which degrades the 3D performance. A solution based on a holographic functional screen (HFS) and a ladder-compound lenticular lens unit (LC-LLU) is proposed to increase the viewing angle while optimizing the viewpoint utilization. The LC-LLU and HFS are used to create 160 non-uniformly distributed viewpoints with low crosstalk, which increases the viewpoint density in the middle viewing zone and provides clear monocular depth cues. The corresponding coding method is presented as well. The optimized compound lenticular lens array can balance between suppressing aberration and improving displayed quality. The simulations and experiments show that the proposed 3D LFD can present natural 3D images with the right perception and occlusion relationship within a 65° viewing angle.