Abstract

Compressive light field (CLF) display using multi-layer spatial light modulators (SLMs) is a promising technique for three-dimensional (3D) display. However, conventional CLF display usually uses the reference plane with fixed depth, which does not consider the relationship between the depth distribution of the object and the image quality. To improve the quality of the reconstructed image, we further analyze the relationship between them in the paper. The theoretical analysis reveals that the object with a closer distance to the physical layer has a better reconstruction quality when the SLM layers have the same pixel density. To minimize the deviation between the reconstructed light field and the original light field, we propose a method based on the depth distribution feature to automatically guide the light field optimization without increasing the layered number or the refresh rate. When applied to a different scene, it could detect the dense region of depth information and map them as close to the physical layers as possible by offsetting the depth of the reference plane. Simulation and optical experiments with the CLF display are demonstrated to verify the proposed method. We implement a CLF display that consists of four-layer stacked display panels and the distance between two adjacent layers is 5cm. When the proposed method is applied, the peak signal-to-noise ratio (PSNR) is improved by 2.4dB in simulations and 1.8dB in experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call