Narcissistic personality disorder (NPD) is a personality disorder that affects various aspects of life, including relationships, employment, school, and finances. Persons with NPD usually feel unhappy and disappointed when no one helps them and is not praised for their achievements. Diagnosing narcissism is generally done using a screening test that consumes time and costs a lot. This research aims to evaluate the performance of several feature selection (FS) approaches on machine learning (ML) techniques (support vector machine (SVM), random forest classifier (RFC), and Naive Bayes). Three scenarios of FS (all features, the information gain technique and the gain ratio (GR) feature technique) are used for each ML method. Several experiments using the benchmark narcissistic disorder dataset have been done. It adopts the k-fold cross-validation (10-fold cross-validation) strategy. We evaluate the method’s performance by measuring its accuracy, error rate, and processing time. It is shown that the RFC GR strategy gives the best performance with an accuracy of 100%.
Read full abstract