Abstract
This research aims to develop a classification model for edible and poisonous mushrooms by applying the feature selection approach together with the decision tree technique. Two feature selection methods were applied, including 1) Chi-square and 2) Information Gain, while the effectiveness of the model was compared by three decision tree methods such as Iterative Dichotomiser3, C4.5 and Random Forest. The data used for classifying the edible and poisonous mushrooms derived from the Encyclopedia of Thai mushrooms and the book entitled “Diversity of Mushrooms and Macrofungi in Thailand”. The results of the model’s effectiveness evaluation revealed that the model using the Information Gain technique alongside with the Random Forest technique provided the most accurate classification outcomes at 94.19%; therefore, this model could be further applied in the future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.